Tetrahedron Letters, Vol.27, No.6, pp 679-682, 1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain ©1986 Pergamon Press Ltd.

CONVENIENT ACCESS TO TWO ENANTIOMERIC OXIRANE SYNTHONS BEARING A QUATERNARY GEM-DIMETHYL CARBON CENTER: SYNTHESIS OF 3S-(+) and 3R-(-)-2, 2-DIMETHYL-3, 4-OXO-1-BUTANOL FROM R-(-)-PANTOLACTONE.

Pierre Lavallée^{*1}, Réjean Ruel, Louis Grenier, and Martine Bissonnette Département de chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1K 2R1.

<u>ABSTRACT</u>: Starting with the commercially available R(-)-Pantolactone and using three different pathways, the synthesis of two new and potentially useful enantiomeric hydroxy epoxide synthons possessing a quaternary gem-dimethyl carbon center is reported.

Over the years, an increasing number of structurally and biologically interesting natural products possessing a quaternary gem-dimethyl carbon center has been reported. Among these compounds, one would notice that Aplasmomycin^{2a}, Boromycin^{2b}, Goldinonic Acid^{2c}, the Bryostatins^{2d}, Acutiphycin^{2e} and Pederol^{2f} are all bearing at least one quaternary center which is flanked on both sides (α and α') by either one carbonyl group (α) and one chiral carbinolic center (α') or two chiral carbinolic centers (α and α') (Scheme 1).

Enantiomeric approaches to these challenging natural products, or fragments thereof, could represent a certain degree of difficulty considering: a) the limited availability of readily accessible chiral starting materials possessing a quaternary gem-dimethyl center, and b) the existing methodology for the construction of such a center³ adjacent to chiral carbi-nolic appendages.

Scheme 1

Me Me

Aplasmomycin Boromycin (North)

Goldinonic Acid Boromycin (South)

Bryostatins

Acutiphycin

Pederol

It then came to our attention that the commercially available R(-)-Pantolactone 1, a degradation product of pantothenic acid, was indeed an ideal precursor that would allow us to develop a general and versatile enantio-divergent synthetic strategy. Supplementing to the already flourishing chiron pool⁴, we describe here two short and efficient routes to the enantiomeric 4-hydroxy oxiranes 4 and 11a from (-)-1.

In the first and quite expeditious sequence (see Scheme 2 for experimental details), tosylation of 1 followed by reduction of 2 [mp 98-99°C, $[\alpha]_D^{25} - 22.1^\circ$ (c 2, CHCl₃)] with excess DIBAH at 0°C and quenching with Na₂SO₄•10H₂O ⁵ gave the nicely crystalline diol 3 [mp 79-80°C, $[\alpha]_D^{25} + 4.9^\circ$ (c 2, CHCl₃)]. Treatment of 3 with a premixture (4h, 25°C) of K₂CO₃ in MeOH provided, with inversion of configuration at C-3, the (+)-hydroxy oxirane 4 ($[\alpha]_D^{25} + 16.0^\circ$ (c 2, EtOAc)) in over 90% yield after distillation (bp 70°C/1.3 mm) [Phenylurethane derivative, mp 48°C, $[\alpha]_D^{25} + 10.3^\circ$ (c 2, EtOAc)].

In the second sequence (Scheme 2), 1 was reduced with either excess LiAtH, or with excess $BH_3 \bullet Me_2 S$ -cat.NaBH₄^{6 a} to the corresponding triol 5^7 [oil, $[\alpha]_D^{25}$ - 15.0° (c 2, EtOH)]. Formation of the acetonide & proceeded very rapidly (but only when boron-free 5 was used)6b to afford a 9:1 mixture (GLC) of \S and dioxane ketal 7 as confirmed by various methods.⁸ Alternatively, 5 was converted 9 nearly exclusively to the 1,3-benzylidene &a, from which the derivatives \$b (oil) and \$c [mp 81-82°C, $[\alpha]_D^{25}$ - 18.6° (c 2, CHCl₃)] were obtained as usual (RSO, Cl., pyr. 25°C, 80%). Surprisingly, when either &c (or &b) was submitted to various acidic or hydrogenolysis conditions required for the cleavage of the benzylidene acetal, none of the expected sulfonate diol 9 could be isolated from the complex reaction mixture. Only ozonolysis¹⁰ gave, as expected, a mixture of 10a and 10b (major), the later being converted (>80%) (via 1,3-acyl migration) to 10a under mild acidic conditions during work-up (NaHSO3). Alternatively, 10a was also obtained in 3 steps (60%) from purified 6 (j. Scheme 2). Unfortunately, basic treatment of pure 10a (MeONa or K, CO₃/MeOH, 0° to 25°C) gave an inseparable (flash, distillation) mixture of the desired oxirane 11a (major) and 12a. Even quite delicate conditions (k, 1°, Scheme) invariably would give $\lim_{n \to \infty} b ([\alpha]_D^{25} - 11.2^{\circ})$ (c 3.7, CHC_{2}) in 80-85% yield (and easily debenzoylated to <u>ll</u>a) in addition to 10-15% of J2b ($[\alpha]_D^{25}$ + 105.4° (c 1.7, CHCl₃)) after a careful chromatographic separation, which by no means made this sequence convenient.

Finally, a more practical and efficient sequence was devised. Treatment of 5 with 3-pentanone (ℓ , Scheme) gave exclusively the 1,2-diol 3-pentylidene¹¹ derivative 13 [>90%, bp 69°C/15 mm, $[\alpha]_D^{25} - 4.6^\circ$ (c 2.1, CHC ℓ_3)] which, after benzylation and mild acid hydrolysis of the dioxolane ketal yielded the crystalline benzyl diol 14 [85%, mp 55°C, $[\alpha]_D^{25} - 9.4^\circ$ (c 2, EtOAc)]. Sequential treatment of 14 with NaH and Ts-imidazole¹² led to the formation of the benzyl oxirane 15 [80%, bp 96-97°/0.25 mm, $[\alpha]_D^{25} - 9.7^\circ$ (c 2.7, EtOAc); (+)-15 derived from (+)-4: $[\alpha]_D^{25} + 10.2^\circ$ (c 2, EtOAc)] and subsequent hydrogenolysis of the benzyl group gave the desired (-)-hydroxy oxirane 11a in nearly quantitative yield¹³ ($[\alpha]_D^{25} - 15.2^\circ$ (c 1.8, EtOAc); phenyluretane derivative: mp 48°C, $[\alpha]_D^{25} - 10.5^\circ$ (c 1.1, EtOAc)).

Scheme 2

Reagents¹⁴: (a) TSC2, DMAP cat., pyr., rt (95%). (b) 1° DIBAH, 3 equiv., THF, 0°C; 2° Na₂SO₄•10H₂O⁵ (80%). (c) K₂CO₃, MeOH, rt (90%). (d) 1° LiAlH₄, THF, reflux; 2° Na₂SO₄•10H₂O⁵ (95%). (e) BH₃•Me₂S, NaBH₄ cat., THF, reflux (80%, boron-free)⁶b. (f) acetone, p-TsOH cat., rt (100%). (g) PhCH(OMe)₂, POC2₃cat., CH₂C2₂, reflux⁹. (h) RSO₂C2, pyr. rt (80% from 5). (1) O₃, C2CH₂CH₂C2, AcOH cat., 0°C (95%). (j)1° BzC2, pyr., rt; 2° HC2 1M-THF (1:1), rt; 3° TSC2, pyr. rt (60%). (k) 1° NaH, DMF-THF (1:1), -20°C; 2° cat. MeONa, MeOH (80%). (1) 3-pentanone, p-TsOH cat., THF, reflux (90%). (m) 1° NaH, PhCH₂Br, DMF; 2° 80% aq. AcOH, reflux; 3° cat. MeONa, MeOH (85%). (n) 1° NaH, 2.5 equiv.; 2° Ts-imidazole, THF-DMF (1:1) (80%). (o) H₂, 20% Pd(OH)₂/C, 95% EtOH, rt (90%). Acknowledgements: We are grateful to NSERC-Canada, FCAR-Québec for financial support of this work and for fellowships to M.B. (NSERCC) and to R.R.(Université de Sherbrooke).

References and Notes.

- 1. Fellow of the "Ministère de la Science et de la Technologie du Québec", 1982-1987.
- For leading references concerning the structure and alternative synthetic investigations of these natural products, see: (a) E.J. Corey, B.-C. Pan, D.H. Hua, D.R. Deardorff, J. Am. Chem. Soc., <u>104</u>, 6812(1982); E.J. Corey, D.H. Hua, B.-C. Pan, S.P. Seitz, ibid., <u>104</u>, 6818 (1982). (b) J.D. White, S.C. Choudhry, M. Kang, Tetrahedron Lett., <u>25</u>, 3671(<u>1984</u>); S. Hanessian, D. Delorme, P.C. Tyler, G. Demailly, Y. Chapleur, Pure and Applied Chem., <u>55</u>, 205 (1983). (c) R.E. Dolle, K.C. Nicolaou, J. Am. Chem. Soc., <u>107</u>, 1691, 1695 (1985). (d) G.R. Pettit, Y. Kamano, C.L. Herald, M. Tozawa, Can. J. Chem., <u>63</u>, 1204 (1985). (e) J.J. Barchi R.E. Moore, G.M.L. Patterson, J. Am. Chem. Soc., <u>106</u>, 8193 (1984). (f) P. Kocienski, T.M. Willson, J. Chem. Soc. Chem. Commun. 1011(<u>1984</u>); T. Matsumoto, F. Matsuda, K. Hasegawa M. Yanagiya, Tetrahedron, <u>40</u>, 2337 (1984); J. Meinwald, Pure and Applied Chem., <u>49</u>, 1275 (1977).
- 3. S.F. Martin, Tetrahedron, 36, 419 (1980).
- (a) S. Hanessian, "Total Synthesis of Natural Products: The Chiron Approach", Pergamon Press, Oxford, 1983.(b) A.S. Rao, S.K. Pakmikar, J.G. Kirtane, Tetrahedron, 39, 2323 (1983).
- 5. A.M. Treasurywala, Aldrichimica Acta <u>9</u>, 22 (1976). Although this very efficient procedure has been recommended for work-up of $LiAlH_{\rm L}$ reactions, we have found it to be equally effective to quench various metal hydride and Wittig-type reactions, specially when quite polar products are to be isolated.
- 6. (a) S. Saito, T. Hasegawa, M. Inaba, R. Nishida, T. Fujii, S. Nomizu, T. Moriwake, Chem. Letters, 1389 (1984). (b) Even after several coevaporations with anh. MeOH, residual boron side-products (¹¹B-NMR) were found to strongly hamper the efficient formation of any ketal of 5. Boric acid was most conveniently removed by treatment of an aqueous solution of 5 with a combination of basic-acidic resins and evaporation of the solvent.
- 7. (a) T. Matsuo, K. Mori, M. Matsui, Tetrahedron Lett. 1979 (1976). (b) These authors reported for 5 (LiAlH₄ reduction of 1, 34%): $[\alpha]_{1}^{2}$ 16.0° (c 1, EtOH).
- 8. (a) After a delicate separation by MPLC (EtOAc-hexane, 1:1), ¹H and specially ¹³C-NMR were quite indicative ⁸b: 6, δ 108.9 ppm for the ketal carbon, and 7, δ 98.9 ppm. (b) J.G. Buchanan, A.R. Edgar, D.I. Rawson, P. Shahidi, R.H. Wightman, Carbohydr. Res., <u>100</u>, 75 (1982). (c) Data for 6: [α]²⁵_D 1.5° (c 5.6, CHCl₃); 3,5-DNBz derivative: mp 50-51°C, [α]²⁵_D + 8.8° (c 3, CHCl₃). Lit.^{7a} for 6: [α]²²_D 0.7° (neat), and see ref. 2c for other uses of 5 and 6.
- 9. B.A. Murrer, J.M. Brown, P.A. Chaloner, P.N. Nicholson, D. Parker, Synthesis 350 (1979).
- 10. P. Deslongchamps, C. Moreau, D. Fréhel, R. Chênevert, Can. J. Chem., 53, 1204 (1975).
- For a recent example of high regioselectivity in 3-pentylidene ketal formation from a 1,2,4-triol, see: S. Masamune, P. Ma, H. Okumoto, J.W. Ellingboe, Y. Ito, J. Org. Chem., 49, 2834 (1984).
- 12. D.R. Hicks, B. Fraser-Reid, Synthesis 203 (1974).
- Starting with S-(+)-pantolactone derived from S-(-)-dimethyl malate [see: D. Wasmuth, D. Arigoni, D. Seebach, Helv. Chim. Acta. 65, 344 (1982)], the epoxide <u>11</u>a could also be made available using the sequence <u>1</u> to <u>4</u> described above.
- 14. All compounds reported in this paper gave satisfactory spectroscopic (IR, ¹H and ¹³C-NMR) and analytical data (MS and/or microanalysis). The yields reported are for isolated and pure products and were not necessarily optimized.

(Received in USA 7 November 1985)